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Field theoretic calculation of the surface tension for a model electrolyte system
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We carry out the calculation of the surface tension for a model electrolyte to first order in a cumulant
expansion about a free-field theory equivalent to the Debye-Hickel approximation. In contrast with previous
calculations, the surface tension is calculated directly without recourse to integrating thermodynamic relations.
The system considered is a monovalent electrolyte with a region at the interface, ofrwfdtim which the
ionic species are excluded. In the case where the external dielectric cogsissmaller than the electrolyte
solution’s dielectric constard we show that the calculation at this order can be fully regularized. In the case
whereh is taken to be zero the Onsager-Samaras limiting law for the excess surface tension of dilute electro-
lyte solutions is recovered, with corrections coming from a nonzero valug/ef
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[. INTRODUCTION semble chosen since the thermodynamic identities from
. ) ~ which the surface tension is calculated are exact. However,
The first experiments to measure the surface tension qfevin points out that calculations of the surface tension in-
electrolyte solutions show that the excess surface tensiogariably rely on approximation schemes, notably the Debye-
denoted in this paper by, due to the presence of the elec- Hiickel approximation, and that a given approximation
trolyte is positive[1]. This result has been confirmed by scheme will generally yield different results for different
more recent experimen{®]. This effect was explained by choices of thermodynamic ensemble. For example, Levin ap-
Wagner[3] who pointed out that when the dielectric constantplies a canonical approach whereas the original Onsager-
of the bulk solvenihere water € is greater than that of the Samaras result was obtained using the grand-canonical en-
exterior (here aij g, then the image charges, due to the di-semble. In the approach of Levir, is given by the excess
electric variation across the surface, repel the solute ionklelmholtz free energy due to the presence of an interface.
from the surface and thus lead to a reduction of the density of his free-energy excess is obtained by calculating the inter-
ions near the surface with respect to the bulk. Applying theh@l energy due to the presence of the interface and then in-
Gibbs adsorption isotherm we then find teatmust be posi- tegrating it via the Gl_mt_elberg charging process to obtain the
tive. In addition experimental results on systems at wealk®€ €nergy. In the limit of weak electrolytes the Onsager-
dilution for solutes of the same valency are very similar,>@maras limiting law is recovered, thus, as Levin remarks,
suggesting a universal limiting law at weak dilution. Such asuggesting that the Onsager-Samaras limiting law is indeed

universal limiting law was subsequently obtained by Onsage?x?r?t'this aper we calculate. in the arand-canonical en-
and Samaraf4]. pap e g

. . . . semble by directly calculating the excess grand potential due
A Series of experiments carried out in 19368§ caused a to the presence of an interface. In this way we avoid the
a1'ntegration of differential thermodynamic identities such as

tions a negative excess surface tension was reported. It SCeig, “Ginns adsorption isotherm or the Giintelberg charging
that these experiments have not been revisited using mOdeB?ocess, and so provide another route for doing the calcula-

technilques,. or at least have not been reproQuced since: Ifthn. In addition, we develop a controlled perturbation theory
negativeae IS found, then appealing to t_he G|bb§ ad;sorpnonbased on a cumulant expansion, similar to that used for bulk
isotherm, there must be some mechanism causing ions to l%

?ectrolytes by Netz and Orlanfd 3]; this is a perturbation
positively adsorbed near the interface. Various authors havgX ansion in the couplina const . I./l~. wherel- is the
discussed ion-specific effects which could explain such P Ping s o, b

Debye length ands the Bj length. We show that th
phenomenon6-10, and also lead to the ion dependent ebye 1engih and the BIErum 1eng e snow that the

o inth &t hiah Onsager-Samaras limiting law is the first term in this cumu-
;Z:Iiitrlgns seen in the measurementsrpat higher concen- 5t axpansion, showing that it is indeed exact to this order.

. . The limiting laws obtained in the literature are given in the
The calcu_la_ltlon .Of the S‘_”face tension of electrolytes WaJimit where €,/ €e— 0, which is clearly a good approximation
recently revisited in a series of papers by Leyirl] and

; . for agueous solutions in air wheeg/ e= 1/80. In this paper
LeV|_n and Flores-Men@l2]. Because of the thermodynamlc we generalize the Onsager-Samaras result and give the cor-
equivalence of ensembles, an exact calculation of the surfa

) . ; cr%sponding limiting law in the case wheeg/ e>0.
tension should give the same result independent of the en- Our approach is also applied to a modified model of the
interface where there is surface-exclusion layer for the ions
of thicknessh: a region at the surface from which the hy-
*Email address: dean@irsamc.ups-tlse.fr drated ions are forbiddefd,11,14. Highly accurate numeri-
"Email address: rrh@damtp.cam.ac.uk cal integration is used to investigate the importance of the
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short-distance cutoff corresponding to a hard core interaction
between ions of nonzero radius is necessary to regulate ul-
traviolet divergences in the model, but at the level of ap-

proximation used in this paper such divergences are absent
and the assumption that the ions may be considered pointlike
for the calculation of interion interactions is valid. In the
bulk solution the fugacity of the cations and anions is equal
and denoted byu. The system up can be summarized in
terms of a spatially dependent dielectric constaf@ and
spatially dependent fugacity(z) which are defined as fol-

EXTERIOR

lows:
€@ g
TN — = z=h
FIG. 1. Schematic image of the exterior bulk interface for the e2=¢ z>-h (1)

model considered here. The values of the local dielectric constants
and fugacities as a function of the distance from the dividing surand
face are shown. The charges of the ions are taken to be at their
centers which are excluded from the surface-exclusion layer of
width h.

um(2=0, z<O0,

2=, z>0. (2

effect of this exclusion layer on the value of. In the grand-canonical ensemble the grand partition func-
The techniques used in this paper are based on the fielgbn for the system is given by the functional integral over
theoretic sine-Gordon representation of the grand partitioghe Wick rotated electrostatic potential
function first introduced in this context in Refl5]. The
perturbation theory about the free field or Debye-Huckel
theory is carried out using a functional path integral tech-
nique introduced recently by the authois6-18, which ) i )
lends itself to the geometry of planar systems and gives ¥ith the actionS given by

powerful alternative method for the calculation of the func- B
S¢l=-3 f dxe(x)(V ¢)* + 2 J dxu(x)codepe), (4)

I

- [ dglexnisia, ®

tional determinants involved.
We conclude with a discussion of our results and the pos-

sible advantages of our approach for calculaiindn more  \heree is the electron charge an@lis the inverse tempera-
complex models where, for example, a surface charge existgre. We note that with this action carrying out the functional
due to a thermodynamic adsorption process for one of theytegral overg induces the Coulomb interaction with image
ionic species at the surface or due to a difference in thgharges between the ions in the system. In addition, this par-
hydrated radii between the cations and anions. tition function includes the effect of the thermal fluctuations
In this paper we use MKS units throughout. of the electrostatic field which are present even in the ab-
sence of ions, namely, at=0, which is due to the contribu-
tion of fluctuations in the presence of an interface. Wjaen
=0 the partition function which yields this contribution is
We consider a model consisting of a semi-infinite electro- — _
lyte bulk with monovalent salt in contact with a semi-infinite E(n=0)=def- Ve(x) - V]2 (5)

exterior, see Fig. 1. The bulk solvent's dielectric constant isthis gives a contribution to the surface tension even in the
denoted bye and the exterior dielectric constant is denotedghsence of ions. It should be noted that it is incorrect to

by €. Therg is_ a reg!on of width between the exterior and jmpose the conditiorE(.=0)=1 onE(u) since this contri-
salt ions are excluded, this is a standard surface-exclusiofjs point in terms of quantum electrodynamics we refer the

layer and was first introduced by Rand[dd] in the context  reader to Ref[16]. The fugacityu(x) is determined by the
of electrolyte surface tensions. The widthof the surface- o density p(x). In the system under study is the ion

e_xclu_si_on layer is the orde_r of a hydrgted ion radius. Fordensity in the bulk reservoir and thus we have
simplicity both hydrated anions and cations are taken to be
of the same size and are hence both excluded from this re- p

ion and i i p=i— e =2p. (6)
gion and so there is no surface charging process. However, (coseBd)
the model and approach can be generalized to ions of differ- o o
ent radii which will lead to different ion-specific surface The renormalization consta '=(coseB¢) explicitly ac-
layer widths and so allowing a charging mechanigkd)]. counts for the ion self-interaction effects. Here we have used
The interaction between the ions is taken to be the purelyhe fact that at a point in the system, the average density of
Coulombic interaction between point charges. In general, &ations/anions is given by

Il. THE MODEL
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p+(x) = u(exdiefe(x)]) (7 oe(p) = a(p) = 0(0), (14)

and forx in the bulk p.(x)=p. _ where o(0) is the surface tension of the system with no
We take the area of the system across the interface £ be 5qqed electrolyte. This definition means thats free of the
and the lengthtin the z direction) of the exterior to b and  jyraviolet or short-distance divergences found in calcula-
of the bulk to beL. If one considers just the exterior system tions of the surface tension between two media of differing
without any interface, its grand partition function is given by giglectric constant§19,2q.
In electrostatic problems where the chemical potential and
=15 :f d plexp(SH o)) (8)  dielectric constants depend only on the coordizatbe field
theory can be formulated as a functional path integral for a
with St given by dynamical field¢(r ,z) which evolves in a temporal coordi-
8 natez [18]. The functional Hamiltonians are denoted Hy
-_P 2 in the exterior regionHg in the bulk andHg in the surface-
il 2 f ixeo(V )~ © exclusion layer. In three dimensions this functional problem
cannot be solved exactly but in one dimension it can be and
leads to an explicit solution for the one-dimensional Cou-
lomb gas[21]. The free Debye-Hlckel theory can be also

the integration being over the regitri X A. For a pure bulk
system with no interface the grand partition function is given

by solved in this formulatioril6] and one can develop a pertur-
bation theory about it as we shall show here. For the moment

EB:J dlolexpSsl o)), (100 we will use the Hamiltonian formulation explicitly in order
to find a formal expression for the excess surface tension.
whereS; is given by For a globally electroneutral system with no interfaces and

HamiltonianH and lengthL in the z direction, one may write
S ¢]=- g f dxe(V $)2 + zf dxu cogeBe), (11) the grand partition function g4.8]

. . . . B =Tr exp- LH), (15)
the integration being over the regianx A. The surface ten-
sion is then given by the difference in the grand potential ofhat is, we take the system to be periodic in theirection.

the system with the interface and that of the sum of the twaHence for the pure bulk of electrolyte densjtyone has that
individual (exterior and bulk systems divided by the total for largel,

area, i.e.,
1 =@ =(we (plexd- LHg(p)] W5 (p))  (16)
o=—[IL",L)-I®WL) - IBWL], (12 : .
A and for the exterior region

whereJ(L’,L) is the grand potential for the system shown in
Fig. 1, and wherd®=-In(Eg)/B and B =-In(Zg)/ B de-
note the grand potentials for a bulk system of electrolyte an (B)(p) (3) ; }
exterior system of the same volumeExA] and ﬂ*vhere|\lfO V) and|¥,”) are the normalized ground-state

) : i ) "™ wave functionals for the bulk and exterior functional Hamil-
[L" X A], respectively, but with no interfaces. The definition onjansHg(p) andHg, respectively. Note that the wave func-
of Eq.(12) for the surface tension is, of course, also in agreetionals must be normalized so that the corresponding grand
ment with various other methods for calculation. For ex-potential is zero for a system of zero volume, that is, zero
ample, it is the same as that obtained from the Gibbs adsorgangth in thez direction. If the corresponding ground-state
tion equation as originally used by Onsager and Samara%nergies areE(B)(p) andE®  then we have
The expression, Eq12), for the surface tension can also be 0 0
obtained from the formula BJ(B)(L) - LEE)B)(p) (18)

=0 = (wE|exp(- L'He)[¥E), 17

20 = —fo P4(L)dL, (13 BIBL) =L'EF, (19

wherePg4(L) is the disjoining pressure for a film of external and the corresponding bulk pressures are given by
medium of thicknest surrounded by bulk electrolyte 9.

This system consists of two bulk surfaces a distanepart, @_ Ep)

and so twice the surface tension is given by the work needed BP =~ A (20
to create an infinitely thick filmL — . As mentioned in the

Introduction, the approach here is different from previous

techniques since here the grand potential difference corre- BP(E“—Q (21)
sponding to the surface tension is calculated directly. A

The excess surface tensiopfor a system with bulk elec-
trolyte concentration is defined by For the system with interface we find
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2 = (¥Fexp(- L'Hg)exp(—- hHg)exd - (L — h)Hg]| ¥ ¥
X(p)), (22)
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lg=€B/4me is the Bjerrum length. A cumulant expansion in
ASgenerates a resummed expansiog in the sense that the
term of ordern in the cumulant expansion has the fofp

this is easily seen by joining two such systems together witfr9"fn(9). In the bulk the functionf,(g) then has the form

periodic boundary conditions. We thus obtain
BALL) ={L'E + (L - EG(p)
= In[(Wg7 lexp(- hHY[ W (p))]}.
Using this the excess surface tension is given by

(23)

1
oolp) = - B—A{h[EéB)(p) -EP(0)]

(W |exp(- hH9|[V () ”
”(<\Ing>|exrx—hHs>|\lng><0>> -2
Using the relation$20) and(21) we thus obtain
(<~véE>|exrx— hHs>|~lféB><p>>)
(v exp(- hHy [P (0)) )’
(25)

1
ad(p) =hAP(p) - ,B_AIn

where

AP(p) = Pg(p) — Pg(0) (26)

fo(@) =2/ -,a,m9™. However, in the presence of the interface
we will see thatf,(g) has an extra term containing logarith-
mic terms ing of type > _;a; g™ In(g). This can be shown
by considering the form of the bulk acti& written in times

of the dimensionless field’=eB¢/g and by measuring
length in units of the Debye lengtly=mx). In the new field
and length variables one has the bulk action

—_} i ’ @ J'_ /
S= zfdy4W(V¢)2+4ngdy008(\g¢>), (30)

where Z(g) defined in Eq. (6) is given by Z(g)
=1/{cog\g¢')). It is easy to check thaZ(g)=1+z,0+2,0?
+---. Using the same decomposition in the bulk as above we
obtain

S$=S+AS, (31)

where

i veze ¢4 29
=3 | d oo+ 22 (o @2

is the bulk pressure due to the presence of the electrolyt
The expressioni25) is difficult to evaluate, although an ap-
proach using standard quantum-mechanical perturbation
theory might be investigated. However, if the original field
theory is free or Gaussian, E@5) is relatively straightfor-
ward to compute. We shall use E@5) to evaluate the con- Using the series form foZ(g) we see that\S can be ex-
tribution to the surface tension coming from the free Debyepressed as a power seriegjimith first termO(g). It can also

‘?s the Gaussian or free action and

_ 1 Sy 43 2
AS= 4ngdY{Z(g)COS(\g¢ )+2¢ Z(g)]- (33

Huckel theory.

Ill. CUMULANT EXPANSION OF THE EXCESS SURFACE
TENSION

Perturbation theory about the Debye-Huckel thefk$]
is carried out by decomposing the actiSnn the following
manner:

S=S,+AS. (27)
The first termS, is a Gaussian or free term given by
Beo
2
Be

- J dx[(V )+ nP¢p?] + 2u(L — h)A, (28)
2 [0,L-h]xA

S=- J ax(V 2 - € AX(V )2
[-L'~h,-h] XA 2 Ji-h01xA

wherem is the Debye mass given bw’=2pe?8/ €. The cor-
rection to the Gaussian actiaxSis given by

AS= f dx{Z,u[cos(quB) -1]+ Be—m2¢2} .
[0.L-h]xA 2

(29

be shown thatAS)=0 at O(g) for the homogeneous bulk
system; the corollary is thatAS) #0 at O(g) only for sys-
tems which are not translationally invariant such as the sys-
tem with an interface under discussion here. The outcome is
that when calculating to leading order gnwe just need to
keep the first term in the cumulant expansion of the free-field
theory with AS treated as a perturbation and tbé¢g) con-
tributions to JB(L) and J®(L’) in Eq. (12) are zero. We
write

- [ dglexsis, + 29 = exp(a9y) [ disleisy)
(3

I

with

[ donsens)

(AS)y= (35)

| dgtexssy
The first term in the cumulant expansion can also be shown

to begin with the two-loop term of the standard loop expan-
sion, and hence we shall also refer the calculation that fol-

The termAS is of the order of the dimensionless coupling lows as the two-loop, or more correctly, the resummed two-

constantg=Ig/lp, wherelp=1/m is the Debye length and

loop calculation.
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To this order of approximation the grand potential is given

by
J=Jg+AJ (36)
with
- Blo= In( f d[¢]e><p(So)> : (37)
- BAI=(AS),. (38)

PHYSICAL REVIEW E 69, 061603(2004

A e*8°GR(0,

%’:fdz{&o{exp(— EE5:0.2 2R( Z))—l]

Bem?
2

—+

Gr(0,2) (. (46)

The first term in Eq(46) is finite even in the limith—0
whereas the second term

2
L 'Ezm f d2Gx(0,2)

r= (47)

The actionS, is Gaussian and we define the correlation func-

tion of the field¢ at the same point and a distarczom the
surface-exclusion layer by

<¢(I’,Z)¢(I‘,Z)>o: G(O,Z), (39)

is ultraviolet divergent ak— 0. This divergence is due to the
integral over the potential due to the image charge. We might
naively resolve this potential difficulty by observing that if
we also expand the first exponential in E46) this term is

where we have used the fact that the system is isotropic igxactly canceledAS),=0 to O(g), so resolving the diffi-

the planeA (r € A) but is not isotropic in the direction As
the actionS, is purely quadratic we also have that

(¢(r,2))o=0. (40)
For the bulk systeni.e., without an interfacewe note that

culty. However, this expansion is incorrect since this diver-
gence is, in fact, canceled by another arisingljnThe ex-
pansion of the first exponential gives rise to an erroneous
divergence which then survives wrongly in the final result;
there is no such divergence. The form of E46) is familiar

the same-point field correlator at this level of approximationsince the first exponential is the Boltzmann factor for the

is given by

(&(r,2)¢(r,2))o = Gg(0) = G(0,0) (41)

repulsive image-charge potential that we should expect to
appear and is reminiscent of terms in the Mayer expansion.
To calculateG(0,z) it is convenient to use the path inte-

since the physics as— o for the system with an interface at gral representation of the problem. Using
z=0 is the same as that of the bulk system. Using this result,

we find that for the system with interface
” e*8°G(0,
(390= [ o 2] o - 9502 ]
0 2
2
+ ’Bzm G(O,Z)}.

Using Eq.(7) to relatep and u, we find that toO(g) the
fugacity u is determined by

(42)

2
p=u exp(— BTeZG(O,OC)) i (43
Using the results above, we find
e*B°Gg(0,
(AS)o= Af dz{Zp[exp<— 'BTR(Z)>
2 oo
—ex;{— €A G0, )>] + ’BEmZG(O,z)},
2 2
(44)
where we have defined
Gg(0,2) =G(0,2) - G(0,). (45)

Since we seek a result accurateQgg) we may expand the
second exponential in the integral in Ed4) to first order
and neglect highe©(g?) terms. Using the definition of the
Debye massn this yields

1 ~
B(r,2) = =2, $(p,2explip 1), (48)
VA p

we find that the Gaussian acti& simply becomes sum of
independent Harmonic oscillators

S =2uAL+ X S, (49)
p
where
1 9 ¢(p) 9 $(-p)
S"z_Esz[M(Z) iz 9z
+M(2)0X(p,2) (p) (- p)} : (50)

where M(2)=B€(2), w(p,2)=|p|=p for ze[-L’,h] and
w(p,2)=\p?+n? for ze [h,L]. By expanding in terms of the
Fourier modes we find that

1 ~ -
G(0,2) = ;2 (¢(p,2) (- p,2))o. (51)
p

The Euclidean Feynman propagator for a simple harmonic
oscillator, with Hamiltonian denoted bk ,(w,M), over a
timet given by[22]
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(Xlexd - tHo(w,M)]]Y)

Mw 2 [< 1 5 U2
= —— _— +
(277_ Sini“(wt)) ex 2I\/Iw cothlwt)[X“+Y

1/4
(ol M)|X) = (W) exp(— lwaz) (53)
T 2

- 2XYsechwt)]) (52) with energyEq(w,M)=w/2. In the free-field theory we thus

find
and the ground-state wave function is given by

~ _ (¢o(we(p),Mp)[exd — hHo(ws(p),Ms) Jexp - ZHy(wg(p), Me) IX*|ip(wg(p), Me))
(PP 20= 7 () M) X hHo(we(p), Mo Text— 2Ho(we(P) M) (e M)~ )

where the subscriptB, E, and S refer to the bulk exterior 1-A exp(- 2kmh
and surface-exclusion layer values of the various simple har- = _ ' (60)
; - N ) 1+A exp(— 2kmbh
monic oscillator HamiltoniandH, and the corresponding
massesVl and frequencies in these regions. where
Carrying out the Gaussian integrations we thus obtain that
€ — €
-~ o A=—"2 (62)
(d(p,2) (- p,2))o= D33, (55) €te
whereD is the matrix Using Eq.(58) we find that
m k
a -b 0 G(o,oo):—fdk—, (62
D=[-b ¢ -d]. (56) dmpe ) K
0 -d e and using Eqs(58) and(62) we obtain
The elements ob are given by _.m J k(K - kB) _ 9
Ggr(0,2) = - 2Km2 = ——-A(zm).
R02= se | Mg 1) P 2KM2 = 2 Az
a= Begp + Bep coth(ph),
(63
b = Bep cosecliph), In the caseA=1, Levin and Flores-Mena in E@8) of

Ref. [12] quote a similar formula fokM(z) in their notation.
Comparing our result ak=1 with theirs, we note a misprint
where the exponential ekp2k(z—d)] in the integrand of
their equation should read ex2pz). With this correction

c= Bep coth(ph) + Be\p?+ mPcoth(\p? + n2),

d = BeVp? + mPcoseckiyp? + nz), we identify
e= BeVp? + M1 + coth\p? + nP2)]. (57) W(2) = gA(mz) , Wwith d=h. (64)
A=1

A long but straightforward calculation now gives the result Our result, however, applies for al, 0<A<1, and allh

(0.2 = m J - KcothKma +kB 58 =0. _

A= e “K(KB+ K)[1 + cot(km2]’ Using Eqs.(63) and(47) we find

where the integral ovek is between 0 andh/m whereA is = M f dksz_i. (65)
an ultraviolet cutoff in the Fourier modes of the fighdn the 2m K(kB+K)

pIane_A. In t_he present calculation we will see there are N0 Repeating the above calculation for a pure bulk system,
ultraviolet divergences and we may take the lihit>. In o see that in the absence of an interface Baz,0)=0

Eq. (58) and throughout the rest of this paper we use the, 4 congequently that the corresponding téis), is zero,
following definitions: . :
and so for the pure bulk without interface we have to one
K=\kC+1 (59) loop thatd®=J0". For a pure exterior system the action is
purely Gaussian andS®'=0 identically, and so to one loop
and Eqg. (12) becomes
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1 . AJ
o==(AJ+Jy—- - J5). (66) oeo(p) = — (68)
A A
The excess surface tension is thus given by and 0'(p) is the excess surface tension for a system with

_ (0) just the actionS, which can be calculated exactly in the

= + . : : .
7elp) = oelp) + oe(p), 67 quantum mechanical formulation as all the simple harmonic
where oscillators are decoupled. We have from E2p),

1
oQ(p)=2ph- =2 |:h[EO(wB(p1p)1MB) - Eg(wg(p,0),Mg)]
BAY,

. In(wo(wE(p),MEnexd— hHo<ws<p>,Ms>]|wo<wB<p,p>,MB»)] 69)
(o(we(p),Me) [exd - hHy(ws(p), M) ][#ho(wg(p,0),Mg)) / |’
[
where we have made explicit the dependence of the bulk g 2p g
frequencieswg on p, wg(p;p)=p2+MZ(p). Note that the  BIe= 2Ph<1 ‘g) - f mdz{l - ex;{— 5A(m2
first term in the right-hand side of the above comes from the Kk
constant, or ideal, term in the acti&. if - _
Using Eqs.(52) and (53) we obtain "%m dkk{“ 'n[l t o LrAex kah)]}
_ K (kB-K)
g K-k - A I S A
o(p) = Ppepyh + > f kdk{z |n{1 Ly (1+A 2 In( k) + kB K)}, (72)
K where the functionA(m2 as defined by Eq(63), and we
Xexp(— 2kmh))} - In(—) (70 have arranged the terms to explicitly show the dependence
k on the dimensionless couplirgy We denote the first term to

. . be the exclusion term, the second to be the depletion term,
\;V&trz ngb(g)thgi\zenbgi pressure, that is, to say the bulk Pr€S3nd the third to be the Casimir term. This last designation is
' made because this term represents the contribution from the
1 P quadratic thermal fluctuations of the electrostatic field in the
BPpebye= 21— — J kdkK -k)=2p— — = 2p<1 - _>, presence of a dielectric discontinuity in the Debye-Huckel
4 24 6 approximation. This term gives rise to the Casimir attraction
(71  between two parallel interfaces but also generalizes to other

case including the one discussed here of a single interface.

9

where the rightmost expression in E@l) is obtained after To evaluate this expression it is convenient to decompose
calculatingu in terms ofp [16]. A(m2 into a component which is singular @s-0, which

Collecting all these contributions we arrive at our final gives the direct interaction with the image charge, and a
result for the excess surface tension component finite in this limit;

A exd—2m(z+h)] J“ _ [(exp(— 2mzcoshé - 26)[1 — A% exp(— 4mhsinh 6)])
A = + | d h +A -2 h
(m2 2m(z+h) 0 fsinho 1 +A exp(— 2mhsinh 6 - 26) exp(- 2mzcosho)
X[exp(— 2mhsinh 6) — exp— 2mh cosha)]} , (73
[
where the change of variable=sinh # has been used. function A(m2 is the potential due to the interaction of a

The result foro, is correct in perturbation theory 10(g) charge with its image and, as is seen above, not only includes
and holds for GcA <1 andh=0. In the depletion term, the the screened Coulomltyukawa potential, which is singular
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asz— 0 whenh=0, but also contains nonsingular correction =~ Whenh=0 we have
terms which, in particular, are important whér»>0. We

have derived Eq(72) directly from the perturbation expan- ) = A exp(= 2u) +(1 _Az)f dé sinh @ exp(~ 2u coshé)
sion for the free energy but the same result would be ob- 2u 0

tained from the Gibbs adsorption isotherm or the Giintelberg

charging process; in both cases a perturbation expansion can X<M>. (76)
be obtained for the appropriate quantity which is then appro- 1+A exp(-26)

priately integrated. Levin and collaborat¢is] have derived We find the asymptotic expansion af in the limit of small

a similar result to Eq(72) at O(g) for the caseA=1,h=0 but
they assume the phenomenological form A¢m2 given by
the screened Coulomb potentialtet0: the first term in Eq. B pgA{ln<gA)

g to be

3 1
+2y—— - E(l +A)[2A In(2)

(73). As we shall see in the following section, the result by Boe=~ omlT\ 2 2

2
Levin [11] for o, is numerically similar to ours when evalu-

ated atA=1,h=0 but for general values oA,h the full —(1+A)In(1+A)]} +0(g?In(g)). 77
result forA(mz2 in Eq. (73) is needed for an accurate calcu-

lation of the depletion term. The Casimir term is generated
automatically in the Guntelberg charging process used bb

Levin but again to obtain the general result correcO(g)

When A=1 Eq. (77) is in agreement with the result of
nsager and Samarp4, thus showing that the limiting law

. is exact up to the order of the correction indicated in Eq.
presented here, the process must be derived from the pert I’7'7). We note that from our earlier discussion higher-order

patlon expansmn_for the energy der_1_5|ty c_on3|dered as afun orrections coming from the cumulant expansion will also be
tion of the electric charge. In addition, in our approach, o(g?)

whatever the method for deriving,, the perturbation series
for g, can systematically be calculated to higher orderg in

. . ’ . B. The general case
by including terms of higher order using the cumulant ex- g

pansion inAS, Eq. (33). Our results foro, and A(m2 in Eqgs.(72) and(73) apply
In the next two sections we discuss the consequences @enerally for all 6sA<1,h=0. Whenh is nonzero the ad-
this result. dition of another length scale in the problem renders the

derivation of analytical results considerably more compli-
cated. The first term of Eq72) has a simple physical inter-
pretation, it gives a contributioRpepyd to o which can be

In this section we shall consider the case wher® and interpreted as the work done to expel the ions from the
the cases> ¢,. We show how the Onsager-Samaras limitingsurface-exclusion layer into the bulk. In the limit whédre
law [4] for o, at A=1 follows from our result and we derive <1, i.e.,h<Ip in the second two terms of E¢72) we can

A. The Onsager-Samaras limiting law

the generalization to cases whexe< 1. seth=0 and recover Eq.77) for these two terms. We now
Whenh=0 Eq.(72) becomes present some numerical results based on the highly accurate
5 VEGAS [23] integration package.
Boe= P J du[l - ex;(— gA(u))} + p_gA. (74) To carry out the integration overin Eq. (72) we need to
m 2 4m accurately determine the functiohlmz given in Eq.(63)

We thus see that the calculation @f(p) to the first order and this itself requires an integration overThe decompo-
in the cumulant expansion about the Debye-Hiickel approxiSition for Alma2) given in Eq.(73) is vital for good conver-
mation is divergence free. We now discuss the physical ori9eNce of .th|s latter mtegral since it is converted to a well
gins of these terms. The first term gives a contribution to thd’ehaved integral oves with the singular nature of the po-
surface tensiowr® which can be interpreted as being pro- tential A(m2 expressed explicitly. To attempt the integration

e . .

portional to the depletion of solute with respect to the bulk atoyerk_ln Eq.(63) numerlcally ‘_’VOU"?' not accurately produ_cg
the interface within the Debye-Hiickel approximation. This!hiS Singular behavior especially in the region where it is
term appears in the original Onsager-Samaras calculatioWhOS(; important, namely & 0. V(;/e USEVEGAS t? cgrry out
where it is then integrated with respect to the fugacity via thd1€ ¢ integration in Eq.(73) and so accurately determine
Gibbs adsorption equation to obtain the excess surface tefM?2 on a discrete set of closely spaced pointsZdn the

sion. In the Debye-Hiickel approximation it is easy to sed@nNge O=mz=4 and use interpolation to evaluate this func-
that tion at intermediate points. To calculaég we carry out the

separate integrations in E(72) again usingveGAS. Accu-
o_ [~ rate convergence of the numerical integration in all cases is
poe’ == fo dZp4(2) +p-(2) - 20], (75) rapid and errors are negligible. In Fig. 2 we show the sepa-
rate contributions tar, of the exclusion term, the depletion
where p.(2) indicates the average cation/anion density at aerm, and the Casimir terifthe first, second and third terms
distancez from the surface. The origin of the second term isin Eq.(72), respectively and the total value, as a function of
less clear but it can be thought of as the modification of thesolute molarity 6<x<1.0 for h=0.0,0.1,0.2,0.3 nm and a
thermal fluctuations of the electrostatic field because of théemperature of 20 °C and=0.975, appropriate for water
presence of the electrolyte. wheree/ ;= 80.
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FIG. 2. The component contributions to the surface tension in mN/m vs the molar density for surface exclusion layer thickness
=0.0,0.1,0.2,0.3 nmA=0.975, andT=20 °C.

From Fig. 2 we note that for € h<0.3 nm the depen- creases for two values daf=0.975,0.6 al =20 °C. The first
dence ofo, on h is rather mild especially at low solute den- value corresponds to the water-air interface wél, /€
sity, for example, 0.2 molp, initially decreases with in- =80, €xyerio €0=1, and the second value is for an interface
creasingh but then increases as the exclusion contributiorbetween water and an exterior medium Wéthyerior/ €9=20.
begins to dominate and the effect of the depletion and Can each case, the first column gives the contribution when
simir terms is reduced. Obviously, for largerthe domina- A(m32 is approximated by the Yukawa term and the second
tion of the exclusion term is complete awd will rise lin- column tabulates the contribution when the full expression is
early withh, Eq. (72), for fixed solute density. However, the used forA(m2. For the water/air interface there is negligible
range ofh considered here is typical of physical films and difference forn=0 nm but while both contributions decrease
should be compared with the Debye length at solute densityith h the full result is over five times larger than the phe-
of 1 mol andT=20 °C ofI5=0.305 nm. nomenological Yukawa approximation suggests. The differ-

It is interesting to compare the result for the depletionence is much more marked in the case with0.6 even at
term calculated from the full expression f8m2 given in  h=0 nm with the full result an order of magnitude larger
Eqg. (73) with that for A(m2 approximated by the first term: than the Yukawa approximation whérs0.3 nm. Note that
the Yukawa potential. This is relevant because the Yukaw&he Debye length i$;=0.305 nm, comparable with the larg-
contribution has an obvious physical significance as the poest value oh here. These results show that in a realistic film,
tential for the image-charge repulsion and is the extension tavhich will generally have a surface layer of thickness in the
nonzeroh of the potential used by Levifil1]. We can then range discussed here, the corrections to the Yukawa approxi-
examine the importance of the nonsingular correction term inmation to the image-charge interaction, E@3) are over-
Eq. (73), whose origin is not so phenomenologically obvi- whelmingly important, especially when the thicknéss .
ous. For solute density of 1 mol we show in Table | theFor higher solute densities this inequality is likely to be eas-
respective contributions of these two calculationshais- ily satisfied. A similar effect occurs for the Casimir term, and
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TABLE I. The contribution too, of the seconddepletion term 1.4 . . .
in Eq. (72) for solute density of 1 mol as a function of the exclusion ® h=00(m)
layer thicknes$ in nm. The second column gives the contribution | —hozom . 4
when A(m2 defined in Eq.(73) is approximated by the first ’ A h-03(m) A 4
(Yukawg) term and the third column tabulates the contribution s R A ‘4
when the full expression is used f&(m2. The results shownare 3 45} , 4 * _
for two values ofA=0.975,0.6, and=20 °C. The first value cor- £ 4 . !
responds to the water-air interface wifthzol €0=80, €exterior €0=1, 2 . . . . . * * *

®
and the second value is for an interface between water and an exg 111 . 4
terior medium withegyerio €0=20. For the water/air interface there
is negligible difference foh=0 nm but while both contributions

decrease witth the full result is over five times larger than the 't [

surface tel

| |
phenomenological Yukawa approximation suggests. The difference - - . . . " -
is much more marked in the case with=0.6 with the full result 0.9 1 i
being an order of magnitude larger than the Yukawa approximation
whenh=0.3 nm. Note that the Debye lengthljs=0.305 nm, com-
parable with the largest value bfhere. 0-810 15 0 5 30
Temperature (°C)

A=0.975 A=0.6

Yukawa Eull Yukawa Eull FIG. 3. The temperature dependencerdbr solution of density
h (nm) (MN/m) (mN/m) (mN/m) (mN/m) 1 mol for T in range 10-30 °C and for surface-exclusion layer

thicknesse$©=0.0,0.1,0.2,0.3 nm. The dependenceTobecomes

0.0 0.710 0.712 0.561 0.598 more marked a$ increases, being about 10% over this range for
0.1 0.286 0.414 0.188 0.331 h=0.3 nm. This effect is almost entirely due to the exclusion con-
0.2 0.106 0.287 0.067 0.241 tribution whoseT dependence comes from the formula for the free-
0.3 0.042 0.231 0.026 0.205 gas pressureT plus the dependence of the Debye-Hiickel correc-

tion «T"Y2 HereA=0.975.

it is the slower decrease of both these terms Wwittompared ~turbation expansion in the dimensionless coupling constant
with the phenomenological prediction that almost exactlyd=Ig/lp, wherelg andlp are the Bjerrum and Debye lengths,
balances the increase of the exclusion term Wito that the ~ respectively. We derive the full general expressionsofoto
h dependence of, is relatively weak in the range shown in O(g) for general values oA =(e-¢g)/(e+€),0<A<1, and
Fig. 2 (for A=0.975 herg An outcome is that the result of h=0 nm. The calculational method is based on a direct cal-
Levin [11] for o,, which applies only to the cade=0 nm, culation of the grand potential difference between a system
A=1, is numerically similar to ours fak=0.975 but here we With bulk/exterior interface and a bulk and exterior system
have extended the results accurately to genadrandh to  with no interface(both with periodic boundary conditions
O(g). In this simple model an exclusion layer for the hydrated ions
It should be noted that in the exclusion term in E#R) at the surface was included, both cations and anions are im-
the Debye-Hiickel formula for the pressure has been useplicitly taken to be of the same size and thus had the same
and for solute density of 1 mol ari=20 °C the dimension- range of exclusior. Due to the symmetry between cations
less coupling constant ig=2.339 13, and so the Debye- and anions in the model here, no mean field or average elec-
Hiickel correction to the free gas law pressure is nearly 409drostatic potential or effective surface was generated. The
This indicates that corrections to the bulk pressur®@?)  Onsager-Samaras limiting law is shown to be the limiting
and higher will make a significant contribution at this andform of the first term in this expansion for smagjland we
higher solute densities and, by inference, the higher-ordehave derived its generalization in Eq.7) to the case where
corrections to both the depletion and Casimir terms in EqA<1,h=0 nm. The calculation presented above is at two-
(72) should be calculated. This is the aim of work in hand. loop order and gives a finite result. It would be interesting to
In Fig. 3 we show the temperature dependence 10 o cextend the calculation to higher loop orders but the results at
<T=30 °C for different values oh and solute density of three loops and higher are singular and need to be regulated
1 mol. It is clear from then=0 nm results that the tempera- with a short-distance or hard core cutoff because of the in-
ture dependence of the depletion and Casimir terms is verjferent instability in the pointlike description of charged par-
weak, and that the dominant contribution for>0 nm is ticles in three dimensions. However, it should be noted that
from the exclusion term and simply comes from fhele- there are no such singular contributions from two-loop terms.
pendence of the free gas pressmf@phjs the dependence of |ndeed, it can be shown that the tWO-lOOp contribution to the

the Debye-Hiickel correction T2 pressure in the bulk system is absent.
The method is equivalent to other approaches to calculat-
IV. CONCLUSIONS ing g, such as the Gibbs adsorption isotherm and the Gun-

telberg charging process, both of which can be formulated
We have shown that the calculation of for a simple  using our techniques as perturbation serieg.ihe strength
model of an electrolyte can be formulated in terms of a perof our method is that it gives a systematic expansion which
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can be extended to higher orders gnby including the the other terms will also need correction at higher densities.
higher-order terms in the cumulant expansiorAi in Eq. It should be noted that Levifill] uses the free-gas law to
(33). The explicit terms given here in E@72) to O(g) are,  compute the exclusion term omitting the Debye-Hiickel cor-
respectively, the exclusion term due to the exclusion of thgection which is equivalent to settirg=0 in this term.

gas of solute ions from the surface layer, the depletion term The formalism used here can be extended to deal with

which gives the contribution from the image-charge repul-,se \where an effective surface charge is present due to

sion for ions approaching the surface, and the Casimir term. : . L T .
arising from the change in energy of electric field modes dugélther a difference in hydrated ionic sizes; the behavior of the

to the presence of the surface. Terms higher ordey will Surface cha_rge in such a r_nodel was recently analyze_d in a
correct the first two of these contributions. Our method alsdV€ak charging approximation by the auth¢is]. In addi-
gives the exact form for these terms, and especially gives th#0n, one may also apply this formalism to other systems
full expression for the image-charge potenti@(z,0) with different energetic or thermodynamic mechanisms lead-
=gA(m2/€23 defined in Eqs(63) and (73). The expected iNg to surface charging; these are the so-called charge regu-
screened CoulomigYukawa) potential used by Levirj11] lated modelg24]. In all cases, one can go beyond the first-
can be identified from Eq(73) but the nonsingular correc- Order expansion used here, although this will require a more
tion term is not so easily argued phenomenologically, andophisticated theory with a short-distance cutoff to regularize
from Table | it is seen to be important for>0. By inference  the divergences arising at higher orders in perturbation
a similar effect occurs for the Casimir term. For the exclu-theory; for example, the use of a regularization scheme based
sion term in Eq.(72), dominant for largeh, higher-order on an additional repulsive short range Yukawa interaction
corrections to the Debye-Hiickel approximation are neceswill permit the use of the path integral techniques employed
sary for solute densities greater than 1 mol, and by inferenci this work.
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