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We carry out the calculation of the surface tension for a model electrolyte to first order in a cumulant
expansion about a free-field theory equivalent to the Debye-Hückel approximation. In contrast with previous
calculations, the surface tension is calculated directly without recourse to integrating thermodynamic relations.
The system considered is a monovalent electrolyte with a region at the interface, of widthh, from which the
ionic species are excluded. In the case where the external dielectric constante0 is smaller than the electrolyte
solution’s dielectric constante we show that the calculation at this order can be fully regularized. In the case
whereh is taken to be zero the Onsager-Samaras limiting law for the excess surface tension of dilute electro-
lyte solutions is recovered, with corrections coming from a nonzero value ofe0/e.
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I. INTRODUCTION

The first experiments to measure the surface tension of
electrolyte solutions show that the excess surface tension,
denoted in this paper byse, due to the presence of the elec-
trolyte is positive [1]. This result has been confirmed by
more recent experiments[2]. This effect was explained by
Wagner[3] who pointed out that when the dielectric constant
of the bulk solvent(here water) e is greater than that of the
exterior (here air) e0 then the image charges, due to the di-
electric variation across the surface, repel the solute ions
from the surface and thus lead to a reduction of the density of
ions near the surface with respect to the bulk. Applying the
Gibbs adsorption isotherm we then find thatse must be posi-
tive. In addition experimental results on systems at weak
dilution for solutes of the same valency are very similar,
suggesting a universal limiting law at weak dilution. Such a
universal limiting law was subsequently obtained by Onsager
and Samaras[4].

A series of experiments carried out in 1930s[5] caused a
certain controversy as at very small electrolyte concentra-
tions a negative excess surface tension was reported. It seems
that these experiments have not been revisited using modern
techniques, or at least have not been reproduced since. If a
negativese is found, then appealing to the Gibbs adsorption
isotherm, there must be some mechanism causing ions to be
positively adsorbed near the interface. Various authors have
discussed ion-specific effects which could explain such a
phenomenon[6–10], and also lead to the ion dependent
variations seen in the measurements ofse at higher concen-
trations.

The calculation of the surface tension of electrolytes was
recently revisited in a series of papers by Levin[11] and
Levin and Flores-Mena[12]. Because of the thermodynamic
equivalence of ensembles, an exact calculation of the surface
tension should give the same result independent of the en-

semble chosen since the thermodynamic identities from
which the surface tension is calculated are exact. However,
Levin points out that calculations of the surface tension in-
variably rely on approximation schemes, notably the Debye-
Hückel approximation, and that a given approximation
scheme will generally yield different results for different
choices of thermodynamic ensemble. For example, Levin ap-
plies a canonical approach whereas the original Onsager-
Samaras result was obtained using the grand-canonical en-
semble. In the approach of Levinse is given by the excess
Helmholtz free energy due to the presence of an interface.
This free-energy excess is obtained by calculating the inter-
nal energy due to the presence of the interface and then in-
tegrating it via the Güntelberg charging process to obtain the
free energy. In the limit of weak electrolytes the Onsager-
Samaras limiting law is recovered, thus, as Levin remarks,
suggesting that the Onsager-Samaras limiting law is indeed
exact.

In this paper we calculatese in the grand-canonical en-
semble by directly calculating the excess grand potential due
to the presence of an interface. In this way we avoid the
integration of differential thermodynamic identities such as
the Gibbs adsorption isotherm or the Güntelberg charging
process, and so provide another route for doing the calcula-
tion. In addition, we develop a controlled perturbation theory
based on a cumulant expansion, similar to that used for bulk
electrolytes by Netz and Orland[13]; this is a perturbation
expansion in the coupling constantg= lB/ lD, wherelD is the
Debye length andlB the Bjerrum length. We show that the
Onsager-Samaras limiting law is the first term in this cumu-
lant expansion, showing that it is indeed exact to this order.
The limiting laws obtained in the literature are given in the
limit where e0/e→0, which is clearly a good approximation
for aqueous solutions in air wheree0/e<1/80. In this paper
we generalize the Onsager-Samaras result and give the cor-
responding limiting law in the case wheree0/e.0.

Our approach is also applied to a modified model of the
interface where there is surface-exclusion layer for the ions
of thicknessh: a region at the surface from which the hy-
drated ions are forbidden[4,11,14]. Highly accurate numeri-
cal integration is used to investigate the importance of the
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effect of this exclusion layer on the value ofse.
The techniques used in this paper are based on the field

theoretic sine-Gordon representation of the grand partition
function first introduced in this context in Ref.[15]. The
perturbation theory about the free field or Debye-Hückel
theory is carried out using a functional path integral tech-
nique introduced recently by the authors[16–18], which
lends itself to the geometry of planar systems and gives a
powerful alternative method for the calculation of the func-
tional determinants involved.

We conclude with a discussion of our results and the pos-
sible advantages of our approach for calculatingse in more
complex models where, for example, a surface charge exists
due to a thermodynamic adsorption process for one of the
ionic species at the surface or due to a difference in the
hydrated radii between the cations and anions.

In this paper we use MKS units throughout.

II. THE MODEL

We consider a model consisting of a semi-infinite electro-
lyte bulk with monovalent salt in contact with a semi-infinite
exterior, see Fig. 1. The bulk solvent’s dielectric constant is
denoted bye and the exterior dielectric constant is denoted
by e0. There is a region of widthh between the exterior and
bulk which is filled with the bulk solvent but from where the
salt ions are excluded, this is a standard surface-exclusion
layer and was first introduced by Randles[14] in the context
of electrolyte surface tensions. The widthh of the surface-
exclusion layer is the order of a hydrated ion radius. For
simplicity both hydrated anions and cations are taken to be
of the same size and are hence both excluded from this re-
gion and so there is no surface charging process. However,
the model and approach can be generalized to ions of differ-
ent radii which will lead to different ion-specific surface
layer widths and so allowing a charging mechanism[17].
The interaction between the ions is taken to be the purely
Coulombic interaction between point charges. In general, a

short-distance cutoff corresponding to a hard core interaction
between ions of nonzero radius is necessary to regulate ul-
traviolet divergences in the model, but at the level of ap-
proximation used in this paper such divergences are absent
and the assumption that the ions may be considered pointlike
for the calculation of interion interactions is valid. In the
bulk solution the fugacity of the cations and anions is equal
and denoted bym. The system up can be summarized in
terms of a spatially dependent dielectric constanteszd and
spatially dependent fugacitymszd which are defined as fol-
lows:

eszd = e0, z, − h,

eszd = e, z. − h s1d

and

mszd = 0, z, 0,

mszd = m, z. 0. s2d

In the grand-canonical ensemble the grand partition func-
tion for the system is given by the functional integral over
the Wick rotated electrostatic potentialf,

J =E dffgexpsSffgd, s3d

with the actionS given by

Sffg = −
b

2
E dxesxds¹fd2 + 2E dxmsxdcossebfd, s4d

wheree is the electron charge andb is the inverse tempera-
ture. We note that with this action carrying out the functional
integral overf induces the Coulomb interaction with image
charges between the ions in the system. In addition, this par-
tition function includes the effect of the thermal fluctuations
of the electrostatic field which are present even in the ab-
sence of ions, namely, atm=0, which is due to the contribu-
tion of fluctuations in the presence of an interface. Whenm
=0 the partition function which yields this contribution is

Jsm = 0d = detf− ¹ esxd · ¹g−1/2. s5d

This gives a contribution to the surface tension even in the
absence of ions. It should be noted that it is incorrect to
impose the conditionJsm=0d=1 on Jsmd since this contri-
bution is then wrongly omitted. For a detailed discussion of
this point in terms of quantum electrodynamics we refer the
reader to Ref.[16]. The fugacitymsxd is determined by the
ion density rsxd. In the system under studyr is the ion
density in the bulk reservoir and thus we have

m =
r

kcosebfl
= Zr. s6d

The renormalization constantZ−1=kcosebfl explicitly ac-
counts for the ion self-interaction effects. Here we have used
the fact that at a pointx in the system, the average density of
cations/anions is given by

FIG. 1. Schematic image of the exterior bulk interface for the
model considered here. The values of the local dielectric constants
and fugacities as a function of the distance from the dividing sur-
face are shown. The charges of the ions are taken to be at their
centers which are excluded from the surface-exclusion layer of
width h.
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r±sxd = mkexpf± iebfsxdgl s7d

and forx in the bulkr±sxd=r.
We take the area of the system across the interface to beA

and the length(in thez direction) of the exterior to beL8 and
of the bulk to beL. If one considers just the exterior system
without any interface, its grand partition function is given by

JE =E dffgexpsSEffgd s8d

with SE given by

SEffg = −
b

2
E dxe0s¹fd2, s9d

the integration being over the regionL83A. For a pure bulk
system with no interface the grand partition function is given
by

JB =E dffgexpsSBffgd, s10d

whereSB is given by

SBffg = −
b

2
E dxes¹fd2 + 2E dxm cossebfd, s11d

the integration being over the regionL3A. The surface ten-
sion is then given by the difference in the grand potential of
the system with the interface and that of the sum of the two
individual (exterior and bulk) systems divided by the total
area, i.e.,

s =
1

A
fJsL8,Ld − JsBdsLd − JsEdsL8dg, s12d

whereJsL8 ,Ld is the grand potential for the system shown in
Fig. 1, and whereJsEd=−lnsJEd /b andJsBd=−lnsJBd /b de-
note the grand potentials for a bulk system of electrolyte and
exterior system of the same volumesfL3Ag and
fL83Ag, respectively, but with no interfaces. The definition
of Eq. (12) for the surface tension is, of course, also in agree-
ment with various other methods for calculation. For ex-
ample, it is the same as that obtained from the Gibbs adsorp-
tion equation as originally used by Onsager and Samaras.
The expression, Eq.(12), for the surface tension can also be
obtained from the formula

2s = −E
0

`

PdsLddL, s13d

wherePdsLd is the disjoining pressure for a film of external
medium of thicknessL surrounded by bulk electrolyte[19].
This system consists of two bulk surfaces a distanceL apart,
and so twice the surface tension is given by the work needed
to create an infinitely thick film:L→`. As mentioned in the
Introduction, the approach here is different from previous
techniques since here the grand potential difference corre-
sponding to the surface tension is calculated directly.

The excess surface tensionse for a system with bulk elec-
trolyte concentrationr is defined by

sesrd = ssrd − ss0d, s14d

where ss0d is the surface tension of the system with no
added electrolyte. This definition means thatse is free of the
ultraviolet or short-distance divergences found in calcula-
tions of the surface tension between two media of differing
dielectric constants[19,20].

In electrostatic problems where the chemical potential and
dielectric constants depend only on the coordinatez, the field
theory can be formulated as a functional path integral for a
dynamical fieldfsr ,zd which evolves in a temporal coordi-
natez [18]. The functional Hamiltonians are denoted byHE
in the exterior region,HB in the bulk andHS in the surface-
exclusion layer. In three dimensions this functional problem
cannot be solved exactly but in one dimension it can be and
leads to an explicit solution for the one-dimensional Cou-
lomb gas[21]. The free Debye-Hückel theory can be also
solved in this formulation[16] and one can develop a pertur-
bation theory about it as we shall show here. For the moment
we will use the Hamiltonian formulation explicitly in order
to find a formal expression for the excess surface tension.
For a globally electroneutral system with no interfaces and
HamiltonianH and lengthL in thez direction, one may write
the grand partition function as[18]

J = Tr exps− LHd, s15d

that is, we take the system to be periodic in thez direction.
Hence for the pure bulk of electrolyte densityr one has that
for largeL,

JsBd = kC0
sBdsrduexpf− LHBsrdguC0

sBdsrdl s16d

and for the exterior region

JsEd = kC0
sEduexps− L8HEduC0

sEdl, s17d

where uC0
sBdsrdl and uC0

sEdl are the normalized ground-state
wave functionals for the bulk and exterior functional Hamil-
toniansHBsrd andHE, respectively. Note that the wave func-
tionals must be normalized so that the corresponding grand
potential is zero for a system of zero volume, that is, zero
length in thez direction. If the corresponding ground-state
energies areE0

sBdsrd andE0
sEd, then we have

bJsBdsLd = LE0
sBdsrd, s18d

bJsEdsL8d = L8E0
sEd, s19d

and the corresponding bulk pressures are given by

bPsBd = −
E0

sBdsrd
A

, s20d

bPsEd = −
E0

sEd

A
. s21d

For the system with interface we find
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J = kC0
sEduexps− L8HEdexps− hHSdexpf− sL − hdHBguC0

sBd

3srdl, s22d

this is easily seen by joining two such systems together with
periodic boundary conditions. We thus obtain

bJsL,L8d = hL8E0
sEd + sL − hdE0

sBdsrd

− lnfkC0
sEduexps− hHSduC0

sBdsrdlgj. s23d

Using this the excess surface tension is given by

sesrd = −
1

bA
FhfE0

sBdsrd − E0
sBds0dg

+ lnS kC0
sEduexps− hHSduC0

sBdsrdl
kC0

sEduexps− hHSduC0
sBds0dl

DG . s24d

Using the relations(20) and (21) we thus obtain

sesrd = hDPsrd −
1

bA
lnS kC0

sEduexps− hHSduC0
sBdsrdl

kC0
sEduexps− hHSduC0

sBds0dl
D ,

s25d

where

DPsrd = PBsrd − PBs0d s26d

is the bulk pressure due to the presence of the electrolyte.
The expression(25) is difficult to evaluate, although an ap-
proach using standard quantum-mechanical perturbation
theory might be investigated. However, if the original field
theory is free or Gaussian, Eq.(25) is relatively straightfor-
ward to compute. We shall use Eq.(25) to evaluate the con-
tribution to the surface tension coming from the free Debye-
Hückel theory.

III. CUMULANT EXPANSION OF THE EXCESS SURFACE
TENSION

Perturbation theory about the Debye-Hückel theory[13]
is carried out by decomposing the actionS in the following
manner:

S= S0 + DS. s27d

The first termS0 is a Gaussian or free term given by

S0 = −
be0

2
E

f−L8−h,−hg3A
dxs¹fd2 −

be

2
E

f−h,0g3A
dxs¹fd2

−
be

2
E

f0,L−hg3A
dxfs¹fd2 + m2f2g + 2msL − hdA, s28d

wherem is the Debye mass given bym2=2re2b /e. The cor-
rection to the Gaussian actionDS is given by

DS=E
f0,L−hg3A

dxF2mfcossebfd − 1g +
bem2

2
f2G .

s29d

The termDS is of the order of the dimensionless coupling
constantg= lB/ lD, where lD=1/m is the Debye length and

lB=e2b /4pe is the Bjerrum length. A cumulant expansion in
DSgenerates a resummed expansion ing in the sense that the
term of ordern in the cumulant expansion has the formCn
=gnfnsgd. In the bulk the functionfnsgd then has the form
fnsgd=om=1

` an,mgm. However, in the presence of the interface
we will see thatfnsgd has an extra term containing logarith-
mic terms ing of type om=1

` an,m8 gm lnsgd. This can be shown
by considering the form of the bulk actionSB written in times
of the dimensionless fieldf8=ebf /Îg and by measuring
length in units of the Debye lengthsy=mxd. In the new field
and length variables one has the bulk action

SB = −
1

2
E dy

1

4p
s¹f8d2 +

Zsgd
4pg

E dy cossÎgf8d, s30d

where Zsgd defined in Eq. (6) is given by Zsgd
=1/kcossÎgf8dl. It is easy to check thatZsgd=1+z1g+z2g

2

+¯. Using the same decomposition in the bulk as above we
obtain

SB = S0 + DS, s31d

where

S0 = −
1

2
E dy

1

4p
fs¹f8d2 + f82g +

Zsgd
4pg

E dy s32d

is the Gaussian or free action and

DS=
1

4pg
E dyFZsgdcossÎgf8d +

g

2
f82 − ZsgdG . s33d

Using the series form forZsgd we see thatDS can be ex-
pressed as a power series ing with first termOsgd. It can also
be shown thatkDSl=0 at Osgd for the homogeneous bulk
system; the corollary is thatkDSlÞ0 at Osgd only for sys-
tems which are not translationally invariant such as the sys-
tem with an interface under discussion here. The outcome is
that when calculating to leading order ing we just need to
keep the first term in the cumulant expansion of the free-field
theory with DS treated as a perturbation and theOsgd con-
tributions to JsBdsLd and JsEdsL8d in Eq. (12) are zero. We
write

J =E dffgexpsS0 + DSd < expskDSl0d E dffgexpsS0d

s34d

with

kDSl0 =
E dffgDSexpsS0d

E dffgexpsS0d
. s35d

The first term in the cumulant expansion can also be shown
to begin with the two-loop term of the standard loop expan-
sion, and hence we shall also refer the calculation that fol-
lows as the two-loop, or more correctly, the resummed two-
loop calculation.
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To this order of approximation the grand potential is given
by

J = J0 + DJ s36d

with

− bJ0 = lnSE dffgexpsS0dD , s37d

− bDJ = kDSl0. s38d

The actionS0 is Gaussian and we define the correlation func-
tion of the fieldf at the same point and a distancez from the
surface-exclusion layer by

kfsr ,zdfsr ,zdl0 = Gs0,zd, s39d

where we have used the fact that the system is isotropic in
the planeA sr PAd but is not isotropic in the directionz. As
the actionS0 is purely quadratic we also have that

kfsr ,zdl0 = 0. s40d

For the bulk system(i.e., without an interface) we note that
the same-point field correlator at this level of approximation
is given by

kfsr ,zdfsr ,zdl0 = GBs0d = Gs0,`d s41d

since the physics asz→` for the system with an interface at
z=0 is the same as that of the bulk system. Using this result,
we find that for the system with interface

kDSl0 = AE
0

`

dzH2mFexpS−
e2b2Gs0,zd

2
D − 1G

+
bem2

2
Gs0,zdJ . s42d

Using Eq. (7) to relater and m, we find that toOsgd the
fugacity m is determined by

r = m expS−
b2e2

2
Gs0,`dD . s43d

Using the results above, we find

kDSl0 = AE dzH2rFexpS−
e2b2GRs0,zd

2
D

− expS−
e2b2Gs0,`d

2
DG +

bem2

2
Gs0,zdJ ,

s44d

where we have defined

GRs0,zd = Gs0,zd − Gs0,`d. s45d

Since we seek a result accurate toOsgd we may expand the
second exponential in the integral in Eq.(44) to first order
and neglect higherOsg2d terms. Using the definition of the
Debye massm this yields

kDSl0

A
=E dzH2rFexpS−

e2b2GRs0,zd
2

D − 1G
+

bem2

2
GRs0,zdJ . s46d

The first term in Eq.(46) is finite even in the limith→0
whereas the second term

G =
bem2

2
E dzGRs0,zd s47d

is ultraviolet divergent ash→0. This divergence is due to the
integral over the potential due to the image charge. We might
naively resolve this potential difficulty by observing that if
we also expand the first exponential in Eq.(46) this term is
exactly canceledkDSl0=0 to Osgd, so resolving the diffi-
culty. However, this expansion is incorrect since this diver-
gence is, in fact, canceled by another arising inJ0. The ex-
pansion of the first exponential gives rise to an erroneous
divergence which then survives wrongly in the final result;
there is no such divergence. The form of Eq.(46) is familiar
since the first exponential is the Boltzmann factor for the
repulsive image-charge potential that we should expect to
appear and is reminiscent of terms in the Mayer expansion.

To calculateGs0,zd it is convenient to use the path inte-
gral representation of the problem. Using

fsr ,zd =
1

ÎA
o
p

f̃sp,zdexpsip · r d, s48d

we find that the Gaussian actionS0 simply becomes sum of
independent Harmonic oscillators

S0 = 2mAL + o
p

Sp, s49d

where

Sp = −
1

2
E dzFMszd

] f̃spd
] z

] f̃s− pd
] z

+ Mszdv2sp,zdf̃spdf̃s− pdG , s50d

where Mszd=beszd, vsp ,zd= upu=p for zP f−L8 ,hg and
vsp ,zd=Îp2+m2 for zP fh,Lg. By expanding in terms of the
Fourier modes we find that

Gs0,zd =
1

A
o
p

kf̃sp,zdf̃s− p,zdl0. s51d

The Euclidean Feynman propagator for a simple harmonic
oscillator, with Hamiltonian denoted byHosv ,Md, over a
time t given by [22]
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kXuexpf− tHosv,MdguYl

= S Mv

2p sinhsvtdD
1/2

expS−
1

2
Mv cothsvtdfX2 + Y2

− 2XYsechsvtdgD s52d

and the ground-state wave function is given by

kc0sv,MduXl = SMv

p
D1/4

expS−
1

2
MvX2D s53d

with energyE0sv ,Md=v /2. In the free-field theory we thus
find

kf̃sp,zdf̃s− p,zdl0 =
kc0„vEspd,ME…uexpf− hHo„vSspd,MS…gexpf− zHo„vBspd,MB…gX2uc0„vBspd,MB…l
kc0„vEspd,ME…uexpf− hHo„vSspd,MS…gexpf− zHo„vBspd,MB…guc0„vBspd,MB…l

, s54d

where the subscriptsB, E, and S refer to the bulk exterior
and surface-exclusion layer values of the various simple har-
monic oscillator HamiltoniansHo and the corresponding
massesM and frequenciesv in these regions.

Carrying out the Gaussian integrations we thus obtain that

kf̃sp,zdf̃s− p,zdl0 = D33
−1, s55d

whereD is the matrix

D = 1 a − b 0

− b c − d

0 − d e
2 . s56d

The elements ofD are given by

a = be0p + bep cothsphd,

b = bep cosechsphd,

c = bep cothsphd + beÎp2 + m2cothsÎp2 + m2zd,

d = beÎp2 + m2cosechsÎp2 + m2zd,

e= beÎp2 + m2f1 + cothsÎp2 + m2zdg. s57d

A long but straightforward calculation now gives the result

Gs0,zd =
m

2pbe
E dkk

K cothsKmzd + kB

KskB+ Kdf1 + cothsKmzdg
, s58d

where the integral overk is between 0 andL /m whereL is
an ultraviolet cutoff in the Fourier modes of the fieldf in the
planeA. In the present calculation we will see there are no
ultraviolet divergences and we may take the limitL→`. In
Eq. (58) and throughout the rest of this paper we use the
following definitions:

K = Îk2 + 1 s59d

and

B =
1 − D exps− 2kmhd
1 + D exps− 2kmhd

, s60d

where

D =
e − e0

e0 + e
. s61d

Using Eq.(58) we find that

Gs0,`d =
m

4pbe
E dk

k

K
, s62d

and using Eqs.(58) and (62) we obtain

GRs0,zd =
m

4pbe
E dk

ksK − kBd
KskB+ Kd

exps− 2Kmzd =
g

e2b2Aszmd.

s63d

In the caseD=1, Levin and Flores-Mena in Eq.(8) of
Ref. [12] quote a similar formula forWszd in their notation.
Comparing our result atD=1 with theirs, we note a misprint
where the exponential expf−2ksz−ddg in the integrand of
their equation should read exps−2pzd. With this correction
we identify

Wszd = Ug

2
AsmzdU

D=1
, with d ; h. s64d

Our result, however, applies for allD , 0øDø1, and allh
ù0.

Using Eqs.(63) and (47) we find

G =
rg

2m
E dkk

K − kB

K2skB+ Kd
. s65d

Repeating the above calculation for a pure bulk system,
we see that in the absence of an interface thatGRsz,0d=0
and consequently that the corresponding termkDSl0 is zero,
and so for the pure bulk without interface we have to one
loop thatJsBd=J0

sBd. For a pure exterior system the action is
purely Gaussian andDSsEd=0 identically, and so to one loop
Eq. (12) becomes
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s =
1

A
sDJ + J0 − J0

B − J0
Ed. s66d

The excess surface tension is thus given by

sesrd = se
*srd + se

s0dsrd, s67d

where

se
*srd =

DJ

A
s68d

and se
s0dsrd is the excess surface tension for a system with

just the actionS0 which can be calculated exactly in the
quantum mechanical formulation as all the simple harmonic
oscillators are decoupled. We have from Eq.(25),

se
s0dsrd = 2mh −

1

bA
o
p
FhfE0svBsp,rd,MBd − E0svBsp,0d,MBdg

+ lnS kc0„vEspd,ME…uexpf− hHo„vSspd,MS…guc0„vBsp,rd,MB…l
kc0„vEspd,ME…uexpf− hHo„vSspd,MS…guc0„vBsp,0d,MB…l

DG , s69d

where we have made explicit the dependence of the bulk
frequenciesvB on r, vBsp ;rd=Îp2+m2srd. Note that the
first term in the right-hand side of the above comes from the
constant, or ideal, term in the actionS0.

Using Eqs.(52) and (53) we obtain

se
s0dsrd = PDebyeh +

rg

mb
E kdkH2 lnF1 +

K − k

2k
s1 + D

3exps− 2kmhddG − lnSK

k
DJ s70d

with PDebyethe Debye pressure, that is, to say the bulk pres-
sure toOsgd, given by

bPDebye= 2m −
1

4p
E kdksK − kd = 2r −

m3

24p
= 2rS1 −

g

6
D ,

s71d

where the rightmost expression in Eq.(71) is obtained after
calculatingm in terms ofr [16].

Collecting all these contributions we arrive at our final
result for the excess surface tension

bse = 2rhS1 −
g

6
D +

2r

m
E mdzH1 − expF−

g

2
AsmzdGJ

+ g
r

2m
E dkkH4 lnF1 +

K − k

2k
f1 + D exps− 2kmhdgG

− 2 lnSK

k
D +

skB− Kd
K2skB+ KdJ , s72d

where the functionAsmzd as defined by Eq.(63), and we
have arranged the terms to explicitly show the dependence
on the dimensionless couplingg. We denote the first term to
be the exclusion term, the second to be the depletion term,
and the third to be the Casimir term. This last designation is
made because this term represents the contribution from the
quadratic thermal fluctuations of the electrostatic field in the
presence of a dielectric discontinuity in the Debye-Hückel
approximation. This term gives rise to the Casimir attraction
between two parallel interfaces but also generalizes to other
case including the one discussed here of a single interface.

To evaluate this expression it is convenient to decompose
Asmzd into a component which is singular asz→0, which
gives the direct interaction with the image charge, and a
component finite in this limit:

Asmzd =
D expf− 2msz+ hdg

2msz+ hd
+E

0

`

du sinhuFSexps− 2mzcoshu − 2udf1 − D2 exps− 4mhsinhudg
1 + D exps− 2mhsinhu − 2ud D + D exps− 2mzcoshud

3fexps− 2mhsinhud − exps− 2mhcoshudgG , s73d

where the change of variablek=sinhu has been used.
The result forse is correct in perturbation theory toOsgd

and holds for 0øDø1 andhù0. In the depletion term, the

function Asmzd is the potential due to the interaction of a
charge with its image and, as is seen above, not only includes
the screened Coulomb(Yukawa) potential, which is singular
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asz→0 whenh=0, but also contains nonsingular correction
terms which, in particular, are important whenh.0. We
have derived Eq.(72) directly from the perturbation expan-
sion for the free energy but the same result would be ob-
tained from the Gibbs adsorption isotherm or the Güntelberg
charging process; in both cases a perturbation expansion can
be obtained for the appropriate quantity which is then appro-
priately integrated. Levin and collaborators[11] have derived
a similar result to Eq.(72) at Osgd for the caseD=1,h=0 but
they assume the phenomenological form forAsmzd given by
the screened Coulomb potential ath=0: the first term in Eq.
(73). As we shall see in the following section, the result by
Levin [11] for se is numerically similar to ours when evalu-
ated atD=1,h=0 but for general values ofD ,h the full
result forAsmzd in Eq. (73) is needed for an accurate calcu-
lation of the depletion term. The Casimir term is generated
automatically in the Güntelberg charging process used by
Levin but again to obtain the general result correct toOsgd
presented here, the process must be derived from the pertur-
bation expansion for the energy density considered as a func-
tion of the electric chargee. In addition, in our approach,
whatever the method for derivingse, the perturbation series
for se can systematically be calculated to higher orders ing
by including terms of higher order using the cumulant ex-
pansion inDS, Eq. (33).

In the next two sections we discuss the consequences of
this result.

A. The Onsager-Samaras limiting law

In this section we shall consider the case whereh=0 and
the casee.e0. We show how the Onsager-Samaras limiting
law [4] for se at D=1 follows from our result and we derive
the generalization to cases whereD,1.

Whenh=0 Eq. (72) becomes

bse =
2r

m
E duF1 − expS−

g

2
AsudDG +

rg

4m
D. s74d

We thus see that the calculation ofsesrd to the first order
in the cumulant expansion about the Debye-Hückel approxi-
mation is divergence free. We now discuss the physical ori-
gins of these terms. The first term gives a contribution to the
surface tensionse

sDd which can be interpreted as being pro-
portional to the depletion of solute with respect to the bulk at
the interface within the Debye-Hückel approximation. This
term appears in the original Onsager-Samaras calculation
where it is then integrated with respect to the fugacity via the
Gibbs adsorption equation to obtain the excess surface ten-
sion. In the Debye-Hückel approximation it is easy to see
that

bse
sDd = −E

0

`

dzfr+szd + r−szd − 2rg, s75d

wherer±szd indicates the average cation/anion density at a
distancez from the surface. The origin of the second term is
less clear but it can be thought of as the modification of the
thermal fluctuations of the electrostatic field because of the
presence of the electrolyte.

Whenh=0 we have

Asud =
D exps− 2ud

2u
+ s1 − D2dE

0

`

du sinhu exps− 2u coshud

3S exps− 2ud
1 + D exps− 2udD . s76d

We find the asymptotic expansion ofse in the limit of small
g to be

bse = −
rgD

2m
FlnSgD

2
D + 2g −

3

2
−

1

2D2s1 + Ddf2D lns2d

− s1 + Ddlns1 + DdgG + O„g2 lnsgd…. s77d

When D=1 Eq. (77) is in agreement with the result of
Onsager and Samaras[4], thus showing that the limiting law
is exact up to the order of the correction indicated in Eq.
(77). We note that from our earlier discussion higher-order
corrections coming from the cumulant expansion will also be
Osg2d.

B. The general case

Our results forse andAsmzd in Eqs.(72) and (73) apply
generally for all 0øDø1,hù0. Whenh is nonzero the ad-
dition of another length scale in the problem renders the
derivation of analytical results considerably more compli-
cated. The first term of Eq.(72) has a simple physical inter-
pretation, it gives a contributionPDebyeh to se which can be
interpreted as the work done to expel the ions from the
surface-exclusion layer into the bulk. In the limit wherehm
!1, i.e.,h! lD in the second two terms of Eq.(72) we can
seth<0 and recover Eq.(77) for these two terms. We now
present some numerical results based on the highly accurate
VEGAS [23] integration package.

To carry out the integration overz in Eq. (72) we need to
accurately determine the functionAsmzd given in Eq. (63)
and this itself requires an integration overk. The decompo-
sition for Asmzd given in Eq.(73) is vital for good conver-
gence of this latter integral since it is converted to a well
behaved integral overu with the singular nature of the po-
tentialAsmzd expressed explicitly. To attempt the integration
overk in Eq. (63) numerically would not accurately produce
this singular behavior especially in the region where it is
most important, namely asz→0. We useVEGAS to carry out
the du integration in Eq.(73) and so accurately determine
Asmzd on a discrete set of closely spaced points forz in the
range 0ømzø4 and use interpolation to evaluate this func-
tion at intermediate points. To calculatese we carry out the
separate integrations in Eq.(72) again usingVEGAS. Accu-
rate convergence of the numerical integration in all cases is
rapid and errors are negligible. In Fig. 2 we show the sepa-
rate contributions tose of the exclusion term, the depletion
term, and the Casimir term[the first, second and third terms
in Eq. (72), respectively] and the total value, as a function of
solute molarity 0,xø1.0 for h=0.0,0.1,0.2,0.3 nm and a
temperature of 20 °C andD=0.975, appropriate for water
wheree /e0<80.
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From Fig. 2 we note that for 0,h,0.3 nm the depen-
dence ofse on h is rather mild especially at low solute den-
sity, for example, 0.2 mol;se initially decreases with in-
creasingh but then increases as the exclusion contribution
begins to dominate and the effect of the depletion and Ca-
simir terms is reduced. Obviously, for largerh the domina-
tion of the exclusion term is complete andse will rise lin-
early withh, Eq. (72), for fixed solute density. However, the
range ofh considered here is typical of physical films and
should be compared with the Debye length at solute density
of 1 mol andT=20 °C of lD=0.305 nm.

It is interesting to compare the result for the depletion
term calculated from the full expression forAsmzd given in
Eq. (73) with that for Asmzd approximated by the first term:
the Yukawa potential. This is relevant because the Yukawa
contribution has an obvious physical significance as the po-
tential for the image-charge repulsion and is the extension to
nonzeroh of the potential used by Levin[11]. We can then
examine the importance of the nonsingular correction term in
Eq. (73), whose origin is not so phenomenologically obvi-
ous. For solute density of 1 mol we show in Table I the
respective contributions of these two calculations ash in-

creases for two values ofD=0.975,0.6 atT=20 °C. The first
value corresponds to the water-air interface witheH20

/e0

=80,eexterior/e0=1, and the second value is for an interface
between water and an exterior medium witheexterior/e0=20.
In each case, the first column gives the contribution when
Asmzd is approximated by the Yukawa term and the second
column tabulates the contribution when the full expression is
used forAsmzd. For the water/air interface there is negligible
difference forh=0 nm but while both contributions decrease
with h the full result is over five times larger than the phe-
nomenological Yukawa approximation suggests. The differ-
ence is much more marked in the case withD=0.6 even at
h=0 nm with the full result an order of magnitude larger
than the Yukawa approximation whenh=0.3 nm. Note that
the Debye length islD=0.305 nm, comparable with the larg-
est value ofh here. These results show that in a realistic film,
which will generally have a surface layer of thickness in the
range discussed here, the corrections to the Yukawa approxi-
mation to the image-charge interaction, Eq.(73) are over-
whelmingly important, especially when the thicknesshù lD.
For higher solute densities this inequality is likely to be eas-
ily satisfied. A similar effect occurs for the Casimir term, and

FIG. 2. The component contributions to the surface tension in mN/m vs the molar density for surface exclusion layer thicknessh
=0.0,0.1,0.2,0.3 nm,D=0.975, andT=20 °C.
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it is the slower decrease of both these terms withh compared
with the phenomenological prediction that almost exactly
balances the increase of the exclusion term withh so that the
h dependence ofse is relatively weak in the range shown in
Fig. 2 (for D=0.975 here). An outcome is that the result of
Levin [11] for se, which applies only to the caseh=0 nm,
D=1, is numerically similar to ours forD=0.975 but here we
have extended the results accurately to generalD and h to
Osgd.

It should be noted that in the exclusion term in Eq.(72)
the Debye-Hückel formula for the pressure has been used
and for solute density of 1 mol andT=20 °C the dimension-
less coupling constant isg=2.339 13, and so the Debye-
Hückel correction to the free gas law pressure is nearly 40%.
This indicates that corrections to the bulk pressure atOsg2d
and higher will make a significant contribution at this and
higher solute densities and, by inference, the higher-order
corrections to both the depletion and Casimir terms in Eq.
(72) should be calculated. This is the aim of work in hand.

In Fig. 3 we show the temperature dependence 10 °C
øTø30 °C for different values ofh and solute density of
1 mol. It is clear from theh=0 nm results that the tempera-
ture dependence of the depletion and Casimir terms is very
weak, and that the dominant contribution forh.0 nm is
from the exclusion term and simply comes from theT de-
pendence of the free gas pressure~T plus the dependence of
the Debye-Hückel correction~T−1/2.

IV. CONCLUSIONS

We have shown that the calculation ofse for a simple
model of an electrolyte can be formulated in terms of a per-

turbation expansion in the dimensionless coupling constant
g= lB/ lD, wherelB andlD are the Bjerrum and Debye lengths,
respectively. We derive the full general expressions forse to
Osgd for general values ofD=se−e0d / se+e0d ,0,Dø1, and
hù0 nm. The calculational method is based on a direct cal-
culation of the grand potential difference between a system
with bulk/exterior interface and a bulk and exterior system
with no interface(both with periodic boundary conditions).
In this simple model an exclusion layer for the hydrated ions
at the surface was included, both cations and anions are im-
plicitly taken to be of the same size and thus had the same
range of exclusionh. Due to the symmetry between cations
and anions in the model here, no mean field or average elec-
trostatic potential or effective surface was generated. The
Onsager-Samaras limiting law is shown to be the limiting
form of the first term in this expansion for smallg and we
have derived its generalization in Eq.(77) to the case where
D,1,h=0 nm. The calculation presented above is at two-
loop order and gives a finite result. It would be interesting to
extend the calculation to higher loop orders but the results at
three loops and higher are singular and need to be regulated
with a short-distance or hard core cutoff because of the in-
herent instability in the pointlike description of charged par-
ticles in three dimensions. However, it should be noted that
there are no such singular contributions from two-loop terms.
Indeed, it can be shown that the two-loop contribution to the
pressure in the bulk system is absent.

The method is equivalent to other approaches to calculat-
ing se such as the Gibbs adsorption isotherm and the Gün-
telberg charging process, both of which can be formulated
using our techniques as perturbation series ing. The strength
of our method is that it gives a systematic expansion which

TABLE I. The contribution tose of the second(depletion) term
in Eq. (72) for solute density of 1 mol as a function of the exclusion
layer thicknessh in nm. The second column gives the contribution
when Asmzd defined in Eq. (73) is approximated by the first
(Yukawa) term and the third column tabulates the contribution
when the full expression is used forAsmzd. The results shown are
for two values ofD=0.975,0.6, andT=20 °C. The first value cor-
responds to the water-air interface witheH20

/e0=80,eexterior/e0=1,
and the second value is for an interface between water and an ex-
terior medium witheexterior/e0=20. For the water/air interface there
is negligible difference forh=0 nm but while both contributions
decrease withh the full result is over five times larger than the
phenomenological Yukawa approximation suggests. The difference
is much more marked in the case withD=0.6 with the full result
being an order of magnitude larger than the Yukawa approximation
whenh=0.3 nm. Note that the Debye length islD=0.305 nm, com-
parable with the largest value ofh here.

D=0.975 D=0.6

h snmd
Yukawa
(mN/m)

Full
(mN/m)

Yukawa
(mN/m)

Full
(mN/m)

0.0 0.710 0.712 0.561 0.598

0.1 0.286 0.414 0.188 0.331

0.2 0.106 0.287 0.067 0.241

0.3 0.042 0.231 0.026 0.205

FIG. 3. The temperature dependence ofs for solution of density
1 mol for T in range 10–30 °C and for surface-exclusion layer
thicknessesh=0.0,0.1,0.2,0.3 nm. The dependence onT becomes
more marked ash increases, being about 10% over this range for
h=0.3 nm. This effect is almost entirely due to the exclusion con-
tribution whoseT dependence comes from the formula for the free-
gas pressure~T plus the dependence of the Debye-Hückel correc-
tion ~T−1/2. HereD=0.975.
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can be extended to higher orders ing by including the
higher-order terms in the cumulant expansion inDS in Eq.
(33). The explicit terms given here in Eq.(72) to Osgd are,
respectively, the exclusion term due to the exclusion of the
gas of solute ions from the surface layer, the depletion term
which gives the contribution from the image-charge repul-
sion for ions approaching the surface, and the Casimir term
arising from the change in energy of electric field modes due
to the presence of the surface. Terms higher order ing will
correct the first two of these contributions. Our method also
gives the exact form for these terms, and especially gives the
full expression for the image-charge potentialGsz,0d
=gAsmzd /e2b defined in Eqs.(63) and (73). The expected
screened Coulomb(Yukawa) potential used by Levin[11]
can be identified from Eq.(73) but the nonsingular correc-
tion term is not so easily argued phenomenologically, and
from Table I it is seen to be important forh.0. By inference
a similar effect occurs for the Casimir term. For the exclu-
sion term in Eq.(72), dominant for largeh, higher-order
corrections to the Debye-Hückel approximation are neces-
sary for solute densities greater than 1 mol, and by inference

the other terms will also need correction at higher densities.
It should be noted that Levin[11] uses the free-gas law to
compute the exclusion term omitting the Debye-Hückel cor-
rection which is equivalent to settingg=0 in this term.

The formalism used here can be extended to deal with
cases where an effective surface charge is present due to
either a difference in hydrated ionic sizes; the behavior of the
surface charge in such a model was recently analyzed in a
weak charging approximation by the authors[17]. In addi-
tion, one may also apply this formalism to other systems
with different energetic or thermodynamic mechanisms lead-
ing to surface charging; these are the so-called charge regu-
lated models[24]. In all cases, one can go beyond the first-
order expansion used here, although this will require a more
sophisticated theory with a short-distance cutoff to regularize
the divergences arising at higher orders in perturbation
theory; for example, the use of a regularization scheme based
on an additional repulsive short range Yukawa interaction
will permit the use of the path integral techniques employed
in this work.
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